
2024 International Conference “ROBOTICS & MEHATRONICS” 

29 – 30 October, 2024, Sofia, Bulgaria 

ACKNOWLEDGE THE FINANCIAL SUPPORT OF THE PROJECT WITH ADMINISTRATIVE CONTRACT № KP-06-H57/8 FROM 16.11.2021. 

-  FUNDED BY THE "COMPETITION FOR FUNDING BASIC RESEARCH - 2021." FROM THE RESEARCH SCIENCES FUND, BULGARIA.    

Design based-research for streamlining the 

integration of text-generative AI into socially-

assistive robots 
 

Anna Lekova1, Detelina Vitanova2 
1Institute of  Robotics 

Bulgarian Academy of Sciences,  Acad. 
Georgi Bonchev str., 1113 Sofia  

a.lekova@ir.bas.bg  
2 Computer Science Department, 

ULSIT, 119 Tsarigradsko Shose blvd., 
Sofia, Bulgaria  

d.vitanova@unibit.bg

  

 

 

ABSTRACT: Integrating text-generative AI through 

generative pre-trained transformers (GPTs) into socially-assistive 

robots (SARs) could significantly enhance their ability to perform 

natural language processing (NLP) tasks. Well-known 

implementations of GPTs are OpenAI ChatGPT, Google Gemini, 

MS Azure AI services, BgGPT. A universal approach for 

streamlining this integration would allow people without technical 

expertise to enhance conversations with their robots. This is 

particularly relevant, given that INSAIT has developed BgGPT, 

the first free and open Bulgarian-specific language model, 

designed for Bulgarian users, institutions and businesses. 

Improving the efficiency of voice-based and text-based queries to 

robots is essential for enhancing front-end services, as it facilitates 

more natural interactions with users. On the back-end, text 

generation plays a key role in interpreting and responding to these 

queries. Therefore, the study explores design-based research 

focused on streamlining the integration of BgGPT endpoints into 

various SARs, with a specific focus on evaluating response times. 

The main concept involves developing an Express-based web 

server as the backend infrastructure that facilitates access to GPTs 

and SARs local modules using standard TCP and HTTP protocols. 

In the front end, the server's GET and POST endpoints are 

accessed using Blockly, simplifying application design by offering 

a visual programming environment that allows users to customize 

conversation flows without any programming skills. The 

conclusions regarding the rationale are drawn from the 

implementation of the proposed integration for three different 

GPT models and two SARs—NAO and Furhat. 

Keywords: Socially-assistive robots, Conversational Artificial 

Intelligence, chat GPT models, visual programing, APIs. 

I. INTRODUCTION 

As Artificial Intelligence (AI) advances, AI-powered 
physical robots have become new tools for improving human 
well-being in everyday life. Recently, the integration of text-
generative AI through Generative Pre-trained Transformers 
(GPTs) into Socially-Assistive Robots (SARs) has introduced 
new possibilities for enhancing human-robot interactions. 
However, this integration requires programming skills and 
technical knowledge, particularly in areas like text-to-speech 
services, speech recognition, text generation, user-robot 
interfaces and the robot's sensor and actuator subsystems. In 
this context, there is currently no user-friendly approach how 

to integrate cloud GPT models, such as OpenAI ChatGPT, 
Google Gemini and MS Azure AI services, into SARs. On the 
back-end, text generation plays a key role in interpreting and 
responding to queries. On the other hand, streamlining voice-
based and text-based queries to robots is important for 
enhancing front-end services, allowing for more natural 
interface user-robot. 

Human-like interactions with robots using Conversational 
Artificial Intelligence (ConvAI) enable natural 
communication in various contexts, enhanced by the robot's 
physical presence and hardware sensors. ConvAI combines 
Natural Language Processing (NLP) with machine or deep 
learning and although ConvAI can be virtual, the diverse 
sensory systems and motion control of the robots can provide 
context for the surrounding environment. ConvAI integrated 
into robots should actively generate responses by analyzing 
user utterances and conversation context, enhanced by GPT 
model capabilities. Studies on human-robot interaction 
increasingly focus on integrating cloud-based services for 
speech recognition systems (SRS) and text generation [1-7]. 
Most of these efforts aim to extend conversational dialogue 
and convert voice commands into machine-readable code, 
creating a more natural and intuitive interface for 
communication by integrating chat bots to enhance 
responsiveness. However, few address the technological 
limitations. Authors in [4] conducted a study on the accuracy 
and delay of cloud-based speech recognition systems (SRS) in 
human-robot interaction. Authors’ findings suggest that the 
precision and latency of cloud-based SRS are significantly 
influenced by the network connection's quality and the 
computational capabilities of the cloud server and can vary 
from a few hundred milliseconds to several seconds. These 
results highlight that, while cloud-based technologies offer 
great promise for improving human-robot interactions, they 
also present certain technical challenges, particularly with 
latency and real-time processing. In summary, technical 
expertise is required to improve AI-driven conversations with 
robots, emphasizing the need for a more universal approach to 
streamline the integration of GPTs in SARs. Streamlining 
voice and text queries, along with text generation on the back 
end, is essential for enhancing user interactions and overall 
system efficiency. 



The study explores Design-Based Research (DBR) 
focused on streamlining the integration of chat GPT endpoints 
into various SARs. The previous iterations in this DBR are 
summarized in [8]. The novelty in the ongoing iteration in the 
building-testing cycles of a software architecture for convAI 
in two SARs, lies in the integration of Bulgarian cloud 
services for NLP into the robots’ native software. INSAIT has 
developed BgGPT, the first free and open Bulgarian-specific 
language model, designed for Bulgarian users, institutions and 
businesses. Additionally, the architecture has been optimized 
to address technical challenges, identified in previous 
iterations, especially regarding response time issues with 
cloud services for NLU on the Node-RED platform [9]. This 
study successfully addressed these challenges through 
solutions implemented using a web server developed with 
Express.js [10] and the integration of Blockly [11], thus 
enhancing response times and streamlining programming 
process.  

The contribution of the proposed study is a design-based 
research how to streamline the integration of text- generative 
AI, such as OpenAI ChatGPT, NLPcloud GPT and BgGPT 
endpoints into two SARs - NAO and Furhat, and to evaluate 
the time of GPT APIs response. The main concept involves 
creating an Express-based server that provides seamless 
access to different SARs through standard TCP and HTTP 
protocols. In the front end, the server's GET and POST 
endpoints are accessed using Blockly, simplifying application 
design by offering a visual programming environment that 
allows users to customize conversation flows without any 
programming skills. The conclusions regarding the rationale 
are drawn from the implementation of the proposed 
integration, which involved an analysis of its effectiveness in 
real-world scenarios. 

II.  SOME SPECIFICS OF THE INTEGRATION OF  

SARS WITH CHAT GPT MODELS 

Design-based research in the integration of GPT models into 

SARs focuses on iterative development and testing within 

real-world SARs settings. The modular architecture proposed 

in Fig. 1 offers middleware solutions to simplify the 

integration of various NLP services, such as ASR, TTS, text 

generation, into the native software of robots that may have 

different capabilities and varying levels of embedded AI 

components. Narration can occur through voice, QR code, or 

text. Different SARs manage voice interactions and QR code 

scanning, while text chatting is facilitated through Blockly 

blocks that interface with the Express server frontend (Fig.2). 

A. NLP capabilities of SARs 

 

While the Furhat robot [12], known as one of the most 

advanced conversational robots, possesses many AI 

capabilities, the humanoid NAO robot [13] offers engaging 

animations but has limited speech recognition and dialogue 

options based on a predefined lexicon, resulting in a restricted 

vocabulary and a limited number of dialog scenarios. 

Integrating ConvAI into NAO can significantly enhance its 

capabilities, particularly for intensive speech and listening 

exercises for individuals with language difficulties. 

 

 
Fig 1. Modular architecture for integration of various chat GPT models in 
SARs 

B. Designing API endpoints for chat GPT models 

A universal approach would be to implement a RESTful 

API server, like an Express-based server, that bridges 

different ChatGPT models with SARs. This solution would 

enable developers to easily switch between or combine 

various NLP models, while providing uniform access for 

speech recognition, text-to-speech and text generation 

without requiring wide programming skills. 

An Express-based server refers to a web server built using 

Express.js, a lightweight and flexible web application 

framework for Node.js. Express server simplifies the process 

of building web servers and APIs by providing a set of tools 

and features for handling HTTP requests, routing, 

middleware integration, etc. It offers minimal core 

functionality, designed to be extended, while still maintaining 

the flexibility of Node.js. The developed server for 

integrating ChatGPT models into robots, has various types of 

endpoints that use child processes either for handling the 

robots’ remote API sessions, or external APIs for cloud-based 

natural language processing models like ChatGPT or BgGPT 

to enhance robot interactions. Figure 1 illustrate different 

types of endpoints with child process. The first box on the left 

shows endpoints for executing Python 2.7 child processes in 

Node.js using the built-in child_process module. This allows 

to run Python scripts from the Node.js. To use different 

Python interpreters, a virtual environment (venv) endpoint 

was developed that executes shell commands to start the venv 

activation scripts. This allows for the flexible management of 

project-specific dependencies and interpreter versions.   

Similar endpoints are presented for running, exec commands 

for: java -jar , SSH connection, PSCP, the PuTTY Secure 

Copy client for transferring files securely, etc.  

In line with the principle of modularity, access to OpenAI 

ChatGPT and NLP cloud services was established as 

described in [8]. Similarly, the newly designed access to 

BgGPT was implemented as a child process in JavaScript. 

Using child processes provides some benefits in 

performance, maintainability, and modularity, since it 

isolates the API logic from the main application, resulting in 

Express server code focused on HTTP requests. Child 



processes enable non-blocking execution, allowing the server 

to handle multiple requests simultaneously without delays. 

Additionally, they facilitate the use of Python scripts without 

rewriting them in Node.js, ensuring compatibility with 

existing systems. 

Local endpoints were established for accessing the 

internal repository for data posting and retrieval, integrating 

services through the use of `const repository = {};` , which 

initializes an empty object that stores key-value pairs in json 

format. 

 

C. Integration of Blockly with Express server  

While Express executes backend commands using child 

processes, the frontend is interfaced through Blockly blocks. 

When the user interacts with the blocks for NAO in Blockly 

(Fig.2), this triggers an API request to the server, which then 

runs a Node.js script (utilizing a child process for the Python 

NAOqi session) to control the NAO robot. This setup enables 

streamlining the integration between the visual programming 

environment and the server's backend operations. Through 

the NAO blocks, users can perform actions such as reading 

QR codes, uploading audio files to the NAO's internal 

memory, playing MP3 files, creating animations, and more. 

 

 
Fig. 2. Interface the Express server frontend using Blockly blocks 

III. IMPLEMENTATION AND EVALUATION OF THE 

PROPOSED INTEGRATION 

A. Streamlining the integration of BgGPT endpoints into 

NAO and Furhat robots 

The proposed implementation of the integration of 

BgGPT endpoints into NAO and Furhat robots illustrates that 

this can be done without significant programming skills. Data 

processing, storage and online display were conducted on a 

laptop (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz   

2.80 GHz, 8.00 GB RAM, MS Windows 11 Prof. 64-bit).  

The Express server operates locally, with requests 

handled through the endpoint accessible via the URL: 

`http://localhost:3000/bgGPT?question=<text>&context=<

text>`. In this format, the `<text>` placeholders are replaced 

with the actual `question` and `context` values provided by 

the user in the query string. When a request is made to this 

endpoint, the server triggers the `exec` command, which 

spawns a child process. Since INSAIT didn't have a client for 

using BgGPT at the time of this study, we utilized the Axios 

library in a similar manner. The pseudocode how to access 

BgGPT APIs for the JS child process for the BgGPT endpoint 

is shown in Fig. 3, where the `question` and `context` 

parameters are passed as command-line arguments. The 

output and any errors from the script are managed within this 

process. It also executes and retrieves the output of child 

processes, cloud services, or shell commands in Node.js. By 

the NAO Event Listener: the data output from the Python 

script is logged in stdout.on('data'). Accordingly, the output 

of the command (stored in `stdout`) is then sent to the server 

using the fetch API and saved as a key-value pair in the 

internal repository accessible at 

`http://localhost:3000/repository`. The data is sent in JSON 

format with the following structure: 

   

- key: 'answer', representing the name of the output value.   

- value: `stdout`, which contains the command's output.  

 

 
Fig. 3 Pseudocode for the flow and logic how to access BgGPT APIs 

 

B. Evaluating the response times of BgGPT endpoints  

To set-up logging in an Express server to capture 

incoming requests, request parameters and response details, 

we utilized a logging middleware - Morgan for Node.js.  We 

logged and monitored the request durations within Express, 

which records details of HTTP requests and aids in 

debugging and monitoring server activity.  The `'dev'` format 

provides a concise, color-coded log showing the request 

method, URL, status code, response time, and response size. 

In the example console output, we can observe two logged 

HTTP requests: 

 

 

 

 

 

   

1. Import necessary libraries (axios for HTTP requests). 

 

2. Parse command line arguments and initialize variables: 

   - Extract `question` and `context` from command line 

arguments. 

   - Store the API key. 

 
3. Define the request payload: 

   -Model: "INSAIT-Institute/bggpt-stage3-RFLC-Bigbalance-

Duolingual-v2" 

   - Prompt: "<s>[INST] {question} [/INST] {context}</s> [INST] 

{question} [/INST]" 

   - Set max tokens (1024). 

   - Set temperature to 0.1 (controls randomness). 

   - Set top_k to 20 (limits how many words are considered). 

   - Set repetition penalty to 1.1 (prevents repeated text). 
   - Set stop condition to "</s>". 

   - Stream is set to false. 

 

4. Send a POST request to the BgGPT API: 

   - Use axios to send the request to 

'https://api.bggpt.ai/completions'. 

   - Attach the request payload with headers  

    (data, { 'apikey': apiKey,     'accept': 'application/json', 

    'content-type': 'application/json'}). 

 
5. If the request is successful: 

   - Extract and log the response data: 

     response => 

   - Specifically, log the generated text result: 

     text = response.data.choices[0].text; 

 

6. If the request fails: 

   - Log the error message or error details. 

Server is successfully running, ATlog is listening on port 3000 

`POST /repository 200 7.881 ms - 48`  

`GET /venv 404 14.271 ms - 143` 

 `GET /QA?question= Котките и мишките (and so on) 882 tokens  
  200 3898.670 ms - 882 



The first line indicates that a POST request to `/repository` 

was successful with a status code of 200, responding in just 

7.881 milliseconds (ms) and sending 48 bytes of data. The 

second line shows a GET request to `/venv` that returned a 

404 status (resource not found) in 14.271 ms, with a response 

size of 143 bytes. These logs demonstrate that the Blockly to 

API server is fast, handling requests efficiently even in error 

cases like the 404 response. The third line displays a GET 

request to NLPCloudClient with the parameters 

`question='обичат ли се котка и мишка?'` and 

`context='обясни по детски'`. These values are sourced from 

`Blockly.JavaScript.quote_(block.getFieldValue('QUESTIO

N') and ‘CONTEXT’)`. The status code of 200 indicates a 

successful response, along with the response time in 

milliseconds and the number of received tokens.             

After establishing the connection between Blockly and 

the Express server, we found that the connection time is 

minimal and can be neglected. Unfortunately, the API 

responses are often quite slow. Three Wi-Fi network 

configurations were analyzed (all with Protocol: Wi-Fi 4 

(802.11n); Network band 2.4 GHz and Link speed 

(Receive/Transmit): (1) less than 90/90 Mbps, (2)135/135 

Mbps, (3) 5G 150/150 Mbps).  

The delays coming from the cloud-based BgGPT API 

responses are illustrated in Figures 4-7. The graph in Figure 

4 shows the relationship between the API response time (in 

seconds) and the number of tokens received. The plot 

illustrates that, as the number of completion tokens increases, 

the response time generally increases as well. The trend is 

almost linear,  

We also tested whether some variations caused by factors 

such as network bandwidth, server load and latency within 

the cloud infrastructure, might cause different levels of delay. 

We analyzed whether a network congestion during peak 

usage times can result in slower response times, i.e. during 

cloud resources manage a higher volume of requests. We 

varied also the type of the request content: question 

explanation (tell in a childish way about the planet Saturn) 

and fairy tale generation (tell me a fairy tale about: a cat on a 

tree). From Figures 5 and 6, we can conclude that the 

relationship between received tokens and response time is not 

significantly affected by the type of query content, however 

it does slightly depend on network congestion. Low link 

speeds result in delays of about 1 to 2 seconds, although this 

is not always the case when fewer tokens are received. 

 
Fig. 4 Relationship between the API response time (in seconds) and the 
number of tokens received 

 

Fig. 5 Relationship between the API response time (in seconds) and the 
number of tokens received according to the network congestion for question 
explanation 

 

Fig. 6 Relationship between the API response time (in seconds) and the 
number of tokens received according to the network congestion for fairy tale 
generation 

 

Fig. 7 Relationship between the API response time (in seconds) and the server 
congestion 

C. Discussion 

In general, our results reflect a difference in response time 

between the chat BgGPT APIs and web-based chat BgGPT. 

We explain this by several factors, with the main one being 

network latency. When using APIs, requests and responses 

must travel over the internet, which can introduce delays. In 

difference, web-based chat GPT is optimized to reduce this 

latency, particularly if it is hosted on servers with some 

optimizations for the user. Additionally, API requests often 



incur overhead for authentication, data formatting, and other 

protocol-specific requirements, further increasing response 

times. The server load handling API requests can also vary, 

leading to slower response times during peak usage periods, 

although we didn’t observe this (Fig. 7). 

The results presented in Figures 4 to 6 align with the 

findings of Patil and Gudivada [14]. This comprehensive 

survey discusses the relationship between Large Language 

Models (LLMs) latency and output token count. A detailed 

analysis explaining the linear relationship between LLM 

latency and the number of output tokens, outlining a formula 

for total response time that includes a constant factor plus a 

term proportional to the output token count, can be seen in 

papers [15], [16]. 

 

IV. CONCLUSIONS 

The study proposed design-based research aimed at 

optimizing the integration of chat GPT models, particularly 

BgGPT, into various SARs without programming skills. The 

main concept involves developing an Express-based web 

server as the backend infrastructure, which enables access to 

GPTs APIs and local modules of SARs through standard TCP 

and HTTP protocols. On the front end, users can access the 

server GET and POST endpoints via Blockly, providing a 

visual programming environment that simplifies application 

design and allows for customization of conversation flows. 

After evaluating the response times, it was determined that 

the delays are not attributable to network or cloud server 

congestion. Factors such as network speed, specific days of 

the week, times of day, and the types of request content were 

considered, however the latency primarily arise from using 

APIs and their slow responses due to the overhead for 

authentication, data formatting, and other protocol-specific 

requirements. Further research is necessary to enhance 

response times. 
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