
2024 International Conference “ROBOTICS & MEHATRONICS”

29 – 30 October, 2024, Sofia, Bulgaria

ACKNOWLEDGE THE FINANCIAL SUPPORT OF THE PROJECT WITH ADMINISTRATIVE CONTRACT № KP-06-H57/8 FROM 16.11.2021.

- FUNDED BY THE "COMPETITION FOR FUNDING BASIC RESEARCH - 2021." FROM THE RESEARCH SCIENCES FUND, BULGARIA.

Design based-research for streamlining the

integration of text-generative AI into socially-

assistive robots

Anna Lekova1, Detelina Vitanova2
1Institute of Robotics

Bulgarian Academy of Sciences, Acad.
Georgi Bonchev str., 1113 Sofia

a.lekova@ir.bas.bg
2 Computer Science Department,

ULSIT, 119 Tsarigradsko Shose blvd.,
Sofia, Bulgaria

d.vitanova@unibit.bg

ABSTRACT: Integrating text-generative AI through

generative pre-trained transformers (GPTs) into socially-assistive

robots (SARs) could significantly enhance their ability to perform

natural language processing (NLP) tasks. Well-known

implementations of GPTs are OpenAI ChatGPT, Google Gemini,

MS Azure AI services, BgGPT. A universal approach for

streamlining this integration would allow people without technical

expertise to enhance conversations with their robots. This is

particularly relevant, given that INSAIT has developed BgGPT,

the first free and open Bulgarian-specific language model,

designed for Bulgarian users, institutions and businesses.

Improving the efficiency of voice-based and text-based queries to

robots is essential for enhancing front-end services, as it facilitates

more natural interactions with users. On the back-end, text

generation plays a key role in interpreting and responding to these

queries. Therefore, the study explores design-based research

focused on streamlining the integration of BgGPT endpoints into

various SARs, with a specific focus on evaluating response times.

The main concept involves developing an Express-based web

server as the backend infrastructure that facilitates access to GPTs

and SARs local modules using standard TCP and HTTP protocols.

In the front end, the server's GET and POST endpoints are

accessed using Blockly, simplifying application design by offering

a visual programming environment that allows users to customize

conversation flows without any programming skills. The

conclusions regarding the rationale are drawn from the

implementation of the proposed integration for three different

GPT models and two SARs—NAO and Furhat.

Keywords: Socially-assistive robots, Conversational Artificial

Intelligence, chat GPT models, visual programing, APIs.

I. INTRODUCTION

As Artificial Intelligence (AI) advances, AI-powered
physical robots have become new tools for improving human
well-being in everyday life. Recently, the integration of text-
generative AI through Generative Pre-trained Transformers
(GPTs) into Socially-Assistive Robots (SARs) has introduced
new possibilities for enhancing human-robot interactions.
However, this integration requires programming skills and
technical knowledge, particularly in areas like text-to-speech
services, speech recognition, text generation, user-robot
interfaces and the robot's sensor and actuator subsystems. In
this context, there is currently no user-friendly approach how

to integrate cloud GPT models, such as OpenAI ChatGPT,
Google Gemini and MS Azure AI services, into SARs. On the
back-end, text generation plays a key role in interpreting and
responding to queries. On the other hand, streamlining voice-
based and text-based queries to robots is important for
enhancing front-end services, allowing for more natural
interface user-robot.

Human-like interactions with robots using Conversational
Artificial Intelligence (ConvAI) enable natural
communication in various contexts, enhanced by the robot's
physical presence and hardware sensors. ConvAI combines
Natural Language Processing (NLP) with machine or deep
learning and although ConvAI can be virtual, the diverse
sensory systems and motion control of the robots can provide
context for the surrounding environment. ConvAI integrated
into robots should actively generate responses by analyzing
user utterances and conversation context, enhanced by GPT
model capabilities. Studies on human-robot interaction
increasingly focus on integrating cloud-based services for
speech recognition systems (SRS) and text generation [1-7].
Most of these efforts aim to extend conversational dialogue
and convert voice commands into machine-readable code,
creating a more natural and intuitive interface for
communication by integrating chat bots to enhance
responsiveness. However, few address the technological
limitations. Authors in [4] conducted a study on the accuracy
and delay of cloud-based speech recognition systems (SRS) in
human-robot interaction. Authors’ findings suggest that the
precision and latency of cloud-based SRS are significantly
influenced by the network connection's quality and the
computational capabilities of the cloud server and can vary
from a few hundred milliseconds to several seconds. These
results highlight that, while cloud-based technologies offer
great promise for improving human-robot interactions, they
also present certain technical challenges, particularly with
latency and real-time processing. In summary, technical
expertise is required to improve AI-driven conversations with
robots, emphasizing the need for a more universal approach to
streamline the integration of GPTs in SARs. Streamlining
voice and text queries, along with text generation on the back
end, is essential for enhancing user interactions and overall
system efficiency.

The study explores Design-Based Research (DBR)
focused on streamlining the integration of chat GPT endpoints
into various SARs. The previous iterations in this DBR are
summarized in [8]. The novelty in the ongoing iteration in the
building-testing cycles of a software architecture for convAI
in two SARs, lies in the integration of Bulgarian cloud
services for NLP into the robots’ native software. INSAIT has
developed BgGPT, the first free and open Bulgarian-specific
language model, designed for Bulgarian users, institutions and
businesses. Additionally, the architecture has been optimized
to address technical challenges, identified in previous
iterations, especially regarding response time issues with
cloud services for NLU on the Node-RED platform [9]. This
study successfully addressed these challenges through
solutions implemented using a web server developed with
Express.js [10] and the integration of Blockly [11], thus
enhancing response times and streamlining programming
process.

The contribution of the proposed study is a design-based
research how to streamline the integration of text- generative
AI, such as OpenAI ChatGPT, NLPcloud GPT and BgGPT
endpoints into two SARs - NAO and Furhat, and to evaluate
the time of GPT APIs response. The main concept involves
creating an Express-based server that provides seamless
access to different SARs through standard TCP and HTTP
protocols. In the front end, the server's GET and POST
endpoints are accessed using Blockly, simplifying application
design by offering a visual programming environment that
allows users to customize conversation flows without any
programming skills. The conclusions regarding the rationale
are drawn from the implementation of the proposed
integration, which involved an analysis of its effectiveness in
real-world scenarios.

II. SOME SPECIFICS OF THE INTEGRATION OF

SARS WITH CHAT GPT MODELS

Design-based research in the integration of GPT models into

SARs focuses on iterative development and testing within

real-world SARs settings. The modular architecture proposed

in Fig. 1 offers middleware solutions to simplify the

integration of various NLP services, such as ASR, TTS, text

generation, into the native software of robots that may have

different capabilities and varying levels of embedded AI

components. Narration can occur through voice, QR code, or

text. Different SARs manage voice interactions and QR code

scanning, while text chatting is facilitated through Blockly

blocks that interface with the Express server frontend (Fig.2).

A. NLP capabilities of SARs

While the Furhat robot [12], known as one of the most

advanced conversational robots, possesses many AI

capabilities, the humanoid NAO robot [13] offers engaging

animations but has limited speech recognition and dialogue

options based on a predefined lexicon, resulting in a restricted

vocabulary and a limited number of dialog scenarios.

Integrating ConvAI into NAO can significantly enhance its

capabilities, particularly for intensive speech and listening

exercises for individuals with language difficulties.

Fig 1. Modular architecture for integration of various chat GPT models in
SARs

B. Designing API endpoints for chat GPT models

A universal approach would be to implement a RESTful

API server, like an Express-based server, that bridges

different ChatGPT models with SARs. This solution would

enable developers to easily switch between or combine

various NLP models, while providing uniform access for

speech recognition, text-to-speech and text generation

without requiring wide programming skills.

An Express-based server refers to a web server built using

Express.js, a lightweight and flexible web application

framework for Node.js. Express server simplifies the process

of building web servers and APIs by providing a set of tools

and features for handling HTTP requests, routing,

middleware integration, etc. It offers minimal core

functionality, designed to be extended, while still maintaining

the flexibility of Node.js. The developed server for

integrating ChatGPT models into robots, has various types of

endpoints that use child processes either for handling the

robots’ remote API sessions, or external APIs for cloud-based

natural language processing models like ChatGPT or BgGPT

to enhance robot interactions. Figure 1 illustrate different

types of endpoints with child process. The first box on the left

shows endpoints for executing Python 2.7 child processes in

Node.js using the built-in child_process module. This allows

to run Python scripts from the Node.js. To use different

Python interpreters, a virtual environment (venv) endpoint

was developed that executes shell commands to start the venv

activation scripts. This allows for the flexible management of

project-specific dependencies and interpreter versions.

Similar endpoints are presented for running, exec commands

for: java -jar , SSH connection, PSCP, the PuTTY Secure

Copy client for transferring files securely, etc.

In line with the principle of modularity, access to OpenAI

ChatGPT and NLP cloud services was established as

described in [8]. Similarly, the newly designed access to

BgGPT was implemented as a child process in JavaScript.

Using child processes provides some benefits in

performance, maintainability, and modularity, since it

isolates the API logic from the main application, resulting in

Express server code focused on HTTP requests. Child

processes enable non-blocking execution, allowing the server

to handle multiple requests simultaneously without delays.

Additionally, they facilitate the use of Python scripts without

rewriting them in Node.js, ensuring compatibility with

existing systems.

Local endpoints were established for accessing the

internal repository for data posting and retrieval, integrating

services through the use of `const repository = {};` , which

initializes an empty object that stores key-value pairs in json

format.

C. Integration of Blockly with Express server

While Express executes backend commands using child

processes, the frontend is interfaced through Blockly blocks.

When the user interacts with the blocks for NAO in Blockly

(Fig.2), this triggers an API request to the server, which then

runs a Node.js script (utilizing a child process for the Python

NAOqi session) to control the NAO robot. This setup enables

streamlining the integration between the visual programming

environment and the server's backend operations. Through

the NAO blocks, users can perform actions such as reading

QR codes, uploading audio files to the NAO's internal

memory, playing MP3 files, creating animations, and more.

Fig. 2. Interface the Express server frontend using Blockly blocks

III. IMPLEMENTATION AND EVALUATION OF THE

PROPOSED INTEGRATION

A. Streamlining the integration of BgGPT endpoints into

NAO and Furhat robots

The proposed implementation of the integration of

BgGPT endpoints into NAO and Furhat robots illustrates that

this can be done without significant programming skills. Data

processing, storage and online display were conducted on a

laptop (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

2.80 GHz, 8.00 GB RAM, MS Windows 11 Prof. 64-bit).

The Express server operates locally, with requests

handled through the endpoint accessible via the URL:

`http://localhost:3000/bgGPT?question=<text>&context=<

text>`. In this format, the `<text>` placeholders are replaced

with the actual `question` and `context` values provided by

the user in the query string. When a request is made to this

endpoint, the server triggers the `exec` command, which

spawns a child process. Since INSAIT didn't have a client for

using BgGPT at the time of this study, we utilized the Axios

library in a similar manner. The pseudocode how to access

BgGPT APIs for the JS child process for the BgGPT endpoint

is shown in Fig. 3, where the `question` and `context`

parameters are passed as command-line arguments. The

output and any errors from the script are managed within this

process. It also executes and retrieves the output of child

processes, cloud services, or shell commands in Node.js. By

the NAO Event Listener: the data output from the Python

script is logged in stdout.on('data'). Accordingly, the output

of the command (stored in `stdout`) is then sent to the server

using the fetch API and saved as a key-value pair in the

internal repository accessible at

`http://localhost:3000/repository`. The data is sent in JSON

format with the following structure:

- key: 'answer', representing the name of the output value.

- value: `stdout`, which contains the command's output.

Fig. 3 Pseudocode for the flow and logic how to access BgGPT APIs

B. Evaluating the response times of BgGPT endpoints

To set-up logging in an Express server to capture

incoming requests, request parameters and response details,

we utilized a logging middleware - Morgan for Node.js. We

logged and monitored the request durations within Express,

which records details of HTTP requests and aids in

debugging and monitoring server activity. The `'dev'` format

provides a concise, color-coded log showing the request

method, URL, status code, response time, and response size.

In the example console output, we can observe two logged

HTTP requests:

1. Import necessary libraries (axios for HTTP requests).

2. Parse command line arguments and initialize variables:

 - Extract `question` and `context` from command line

arguments.

 - Store the API key.

3. Define the request payload:

 -Model: "INSAIT-Institute/bggpt-stage3-RFLC-Bigbalance-

Duolingual-v2"

 - Prompt: "<s>[INST] {question} [/INST] {context}</s> [INST]

{question} [/INST]"

 - Set max tokens (1024).

 - Set temperature to 0.1 (controls randomness).

 - Set top_k to 20 (limits how many words are considered).

 - Set repetition penalty to 1.1 (prevents repeated text).
 - Set stop condition to "</s>".

 - Stream is set to false.

4. Send a POST request to the BgGPT API:

 - Use axios to send the request to

'https://api.bggpt.ai/completions'.

 - Attach the request payload with headers

 (data, { 'apikey': apiKey, 'accept': 'application/json',

 'content-type': 'application/json'}).

5. If the request is successful:

 - Extract and log the response data:

 response =>

 - Specifically, log the generated text result:

 text = response.data.choices[0].text;

6. If the request fails:

 - Log the error message or error details.

Server is successfully running, ATlog is listening on port 3000

`POST /repository 200 7.881 ms - 48`

`GET /venv 404 14.271 ms - 143`

 `GET /QA?question= Котките и мишките (and so on) 882 tokens
 200 3898.670 ms - 882

The first line indicates that a POST request to `/repository`

was successful with a status code of 200, responding in just

7.881 milliseconds (ms) and sending 48 bytes of data. The

second line shows a GET request to `/venv` that returned a

404 status (resource not found) in 14.271 ms, with a response

size of 143 bytes. These logs demonstrate that the Blockly to

API server is fast, handling requests efficiently even in error

cases like the 404 response. The third line displays a GET

request to NLPCloudClient with the parameters

`question='обичат ли се котка и мишка?'` and

`context='обясни по детски'`. These values are sourced from

`Blockly.JavaScript.quote_(block.getFieldValue('QUESTIO

N') and ‘CONTEXT’)`. The status code of 200 indicates a

successful response, along with the response time in

milliseconds and the number of received tokens.

After establishing the connection between Blockly and

the Express server, we found that the connection time is

minimal and can be neglected. Unfortunately, the API

responses are often quite slow. Three Wi-Fi network

configurations were analyzed (all with Protocol: Wi-Fi 4

(802.11n); Network band 2.4 GHz and Link speed

(Receive/Transmit): (1) less than 90/90 Mbps, (2)135/135

Mbps, (3) 5G 150/150 Mbps).

The delays coming from the cloud-based BgGPT API

responses are illustrated in Figures 4-7. The graph in Figure

4 shows the relationship between the API response time (in

seconds) and the number of tokens received. The plot

illustrates that, as the number of completion tokens increases,

the response time generally increases as well. The trend is

almost linear,

We also tested whether some variations caused by factors

such as network bandwidth, server load and latency within

the cloud infrastructure, might cause different levels of delay.

We analyzed whether a network congestion during peak

usage times can result in slower response times, i.e. during

cloud resources manage a higher volume of requests. We

varied also the type of the request content: question

explanation (tell in a childish way about the planet Saturn)

and fairy tale generation (tell me a fairy tale about: a cat on a

tree). From Figures 5 and 6, we can conclude that the

relationship between received tokens and response time is not

significantly affected by the type of query content, however

it does slightly depend on network congestion. Low link

speeds result in delays of about 1 to 2 seconds, although this

is not always the case when fewer tokens are received.

Fig. 4 Relationship between the API response time (in seconds) and the
number of tokens received

Fig. 5 Relationship between the API response time (in seconds) and the
number of tokens received according to the network congestion for question
explanation

Fig. 6 Relationship between the API response time (in seconds) and the
number of tokens received according to the network congestion for fairy tale
generation

Fig. 7 Relationship between the API response time (in seconds) and the server
congestion

C. Discussion

In general, our results reflect a difference in response time

between the chat BgGPT APIs and web-based chat BgGPT.

We explain this by several factors, with the main one being

network latency. When using APIs, requests and responses

must travel over the internet, which can introduce delays. In

difference, web-based chat GPT is optimized to reduce this

latency, particularly if it is hosted on servers with some

optimizations for the user. Additionally, API requests often

incur overhead for authentication, data formatting, and other

protocol-specific requirements, further increasing response

times. The server load handling API requests can also vary,

leading to slower response times during peak usage periods,

although we didn’t observe this (Fig. 7).

The results presented in Figures 4 to 6 align with the

findings of Patil and Gudivada [14]. This comprehensive

survey discusses the relationship between Large Language

Models (LLMs) latency and output token count. A detailed

analysis explaining the linear relationship between LLM

latency and the number of output tokens, outlining a formula

for total response time that includes a constant factor plus a

term proportional to the output token count, can be seen in

papers [15], [16].

IV. CONCLUSIONS

The study proposed design-based research aimed at

optimizing the integration of chat GPT models, particularly

BgGPT, into various SARs without programming skills. The

main concept involves developing an Express-based web

server as the backend infrastructure, which enables access to

GPTs APIs and local modules of SARs through standard TCP

and HTTP protocols. On the front end, users can access the

server GET and POST endpoints via Blockly, providing a

visual programming environment that simplifies application

design and allows for customization of conversation flows.

After evaluating the response times, it was determined that

the delays are not attributable to network or cloud server

congestion. Factors such as network speed, specific days of

the week, times of day, and the types of request content were

considered, however the latency primarily arise from using

APIs and their slow responses due to the overhead for

authentication, data formatting, and other protocol-specific

requirements. Further research is necessary to enhance

response times.

ACKNOLEDGEMENTS

The research findings were supported by the National

Scientific Research Fund, Project № KP-06-H67/1. We

express our gratitude to Emiliyan Pavlov from INSAIT, for

assisting us in obtaining the API key and facilitating the use

of the BgGPT API.

REFERENCES

[1]. T. Belpaeme, J. Kennedy, A. Ramachandran, B.

Scassellati, and F. Tanaka, “Social robots for

education: A review,” Science Robotics, vol. 3, no.

21, p. eaat5954, Aug. 2018, DOI:

https://doi.org/10.1126/scirobotics.aat5954.

[2]. O. Elfaki et al., “Revolutionizing social robotics: A

cloud-based framework for enhancing the

intelligence and autonomy of social robots,”

Robotics, vol. 12, no. 2, p. 48, Apr. 2023, DOI:

https://doi.org/10.3390/robotics12020048.

[3]. F. Kaptein et al., “A cloud-based robot system for

long-term interaction: Principles, implementation,

lessons learned,” ACM Transactions on Human-

Robot Interaction, vol. 11, no. 1, pp. 1–27, Mar.

2022, DOI: https://doi.org/10.1145/3481585.

[4]. Deuerlein, M. Langer, J. Seßner, P. Heß, and J.

Franke, “Human-robot-interaction using cloud-

based speech recognition systems,” Procedia CIRP,

vol. 97, pp. 130–135, 2021, DOI:

https://doi.org/10.1016/j.procir.2020.05.214.

[5]. L. Grassi, C.T. Recchiuto, and A. Sgorbissa,

“Sustainable cloud services for verbal interaction

with embodied agents,” Intelligent Service

Robotics, vol. 16, pp. 599–618, 2023, DOI:

https://doi.org/10.1007/s11370-023-00485-3.

[6]. S. Kaszuba, J. Caposiena, S.R. Sabella, F. Leotta,

and D. Nardi, “Empowering collaboration: A

pipeline for human-robot spoken interaction in

collaborative scenarios,” in: A.A. Ali et al., Social

Robotics. ICSR 2023, Lecture Notes in Computer

Science, vol. 14454, Springer, Singapore, 2024,

DOI: https://doi.org/10.1007/978-981-99-8718-

4_9.

[7]. Y. Lai et al., “Intuitive multi-modal human-robot

interaction via posture and voice,” in: J. Filipe, J.

Röning (eds), Robotics, Computer Vision and

Intelligent Systems. ROBOVIS 2024,

Communications in Computer and Information

Science, vol. 2077, Springer, Cham, 2024, DOI:

https://doi.org/10.1007/978-3-031-59057-3_28.

[8]. Lekova, P. Tsvetkova, A. Andreeva, M. Simonska,

and A. Kremenska, “System software architecture

for advancing human-robot interaction by cloud

services and multi-robot cooperation,” International

Journal on Information Technologies and Security,

vol. 16, no. 1, pp. 65–76, 2024, DOI:

https://doi.org/10.59035/fmfz4017.

[9]. ExpressJS. Online: Retrieved October, 2024 from

https://expressjs.com/

[10]. Google Developers, Blockly. Online:

Retrieved October, 2024 from

https://developers.google.com/blockly

[11]. Furhat Robotics. Online: Retrieved

October, 2024 from https://furhatrobotics.com/

[12]. Aldebaran Robotics, NAO. Online:

Retrieved October, 2024 from

https://www.aldebaran.com/en/nao

[13]. R. Patil and V. Gudivada, “A review of

current trends, techniques, and challenges in large

language models (LLMs),” Applied Sciences, vol.

14, no. 5, p. 2074, 2024, DOI:

https://doi.org/10.3390/app14052074.

[14]. C. Han, M. Xu, and H. Wang, “Adapting

large language models for embodied agents,” arXiv

preprint arXiv:2407.05347, 2024, DOI:

https://doi.org/10.48550/arXiv.2407.05347.

[15]. Sharma and K. Patil, “Embodied agent

interactions: Recent developments,” arXiv preprint

arXiv:2410.10819, 2024, DOI:

https://doi.org/10.48550/arXiv.2410.10819.

https://doi.org/10.1126/scirobotics.aat5954
https://doi.org/10.3390/robotics12020048
https://doi.org/10.1145/3481585
https://doi.org/10.1016/j.procir.2020.05.214
https://doi.org/10.1007/s11370-023-00485-3
https://doi.org/10.1007/978-981-99-8718-4_9
https://doi.org/10.1007/978-981-99-8718-4_9
https://doi.org/10.1007/978-3-031-59057-3_28
https://doi.org/10.59035/fmfz4017
https://doi.org/10.3390/app14052074
https://doi.org/10.48550/arXiv.2407.05347
https://doi.org/10.48550/arXiv.2410.10819

