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Abstract— The study presents a methodological approach
for  latent  structural  analysis  (LSA)  in  robotics.  LSA  uses
mathematical  models  to  represent  the  relationship  between
latent variables and their indicators. The main models include
a Y-measurement  model  for  exogenous  variables  and  an  X-
measurement  model  for  endogenous  variables.  Various
measures such as RMSEA, SRMR, CFI and TLI are used to
check the adequacy of the models. RMSEA and SRMR assess
model fit, with values below 0.08 considered good. The CFI and
TLI  also  ranged  between  0  and  1,  with  values  above  0.90
indicating a good fit.
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I. INTRODUCTION 

Today's  companies  in  the  robotics  sector  are
characterised  by  a  highly  dynamic  structure,  operating  in
unpredictable  changes.  They  must  make  precise  and  clear
decisions to develop a model to study their agility. Therefore,
the  present  study  aims  to  support  managers  in  decision-
making by applying a latent-structural approach to studying
their organisational agility. The concept of agility has been
widely  debated  in  terms  of  modern  project  management
concepts or the flexibility of manufacturing plants or systems
[8], but we are not aware of it being used to study modern
organisational  types and in particular in the robotic sector.
We must make a profound and large-scale study about the
overall activity of these companies because, so far, they have
mainly been used when considering agile projects of specific
activities.  Path,  factor  and  latent  structural  analysis  were
applied  in  the  study.  Path  analysis  assesses  the  degree  of
equality  and  fit  of  a  data  set  that  is  needed  to  adjust  a
theoretical  model,  such as a causal  diagram [5].  In [10] a
structural approach for organizational agility path analysis is
proposed.  A successful  approach  begins  by surveying  and
identifying factor dependencies from the literature relevant to
path analysis. 

Therefore,  as  an  object  of  research,  methods  for
evaluating models in latent-structural analysis were chosen.
In connection with their clarification, basic notations used in
the LSA methodology are attached. The subject of research is
how models will be evaluated in LSA.

Therefore,  the  present  study  aims  to  present  statistical
approaches  for  estimating  models  in  LSA.  Mathematical
formulas for each of the models are provided, as well as the
matrix form of the measurement models. Measures are also
given to  check  the adequacy  of  the  models,  which shows

how well they correspond to reality. To achieve the goal, it is
necessary to solve the following tasks:

1)  To  be  considered  various  ways  of  application  of
latent structural analysis in robotics;

2) To  present  the  mathematical  formulas  for  latent-
structural analysis;

3) To propose metrics for checking the adequacy of the
model.

II. APPLICATION OF LATENT STRUCTURAL ANALYSIS IN
ROBOTICS

Latent  Structural  Analysis  (LSA)  can  be  applied  in
various  ways  within  the  field  of  robotics.  Some  key
applications are:

1) Structural  Optimization: LSA  helps  in  optimizing
the design of robotic structures by analyzing stress
distribution  and  identifying  weak  points.  This
ensures that robots are both lightweight and durable,
improving their performance and longevity [14].

2) Dynamic  Analysis: By  using  LSA,  engineers  can
perform  dynamic  analysis  of  robotic  components,
such  as  gears  and  joints,  to  predict  their  behavior
under different operating conditions. This is crucial
for ensuring the reliability and efficiency of robots in
various tasks [1].

3) Path Planning and Control: LSA can be integrated
with machine learning techniques, such as variational
autoencoders (VAEs), to enhance path planning and
control  in  robots.  This  allows  robots  to  navigate
complex environments more effectively [11]. 

4) Route  optimization: In  robotics,  especially  in
autonomous vehicles, LSAs can help optimize routes
by solving linear optimization problems. Reference
[8] offers FMS parts flow path analysis. 

5) Rehabilitation  Robotics: In  the  design  of
exoskeletons  and  other  assistive  devices,  LSA  is
used to ensure that these devices can support human
movement accurately and safely. This is particularly
important  for  rehabilitation  robots  that  assist
individuals with mobility impairments [14].

These applications demonstrate how LSA contributes to
the  advancement  of  robotics  by  improving  design,
functionality, and adaptability.
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Structural optimization using Latent Structural Analysis
(LSA) involves several key steps and benefits:

1) Stress and Strain Analysis: LSA helps in identifying
areas within a robotic structure that experience high
stress and strain. By analyzing these areas, engineers
can  redesign  components  to  distribute  loads  more
evenly, reducing the risk of failure.

2) Material Efficiency: By understanding the structural
demands, LSA allows for the use of materials more
efficiently.  This  means  that  robots  can  be  made
lighter without compromising their strength, which is
crucial  for  improving  energy  efficiency  and
performance.

3) Topology  Optimization: LSA  can  be  used  to
optimize the topology of robotic components.  This
involves creating structures that are not only strong
but also use the least amount of material  possible.
This is particularly useful in additive manufacturing
(3D printing),  where  material  savings  can  lead  to
significant cost reductions.

4) Fatigue  Analysis: LSA  helps  in  predicting  the
lifespan  of  robotic  components  by  analyzing  how
they  will  behave  under  repeated  loading  and
unloading cycles. This is essential for ensuring that
robots can operate reliably over long periods.

5) Dynamic Performance: By optimizing the structural
design, LSA can improve the dynamic performance
of robots. This includes better handling of vibrations
and impacts, which is important for robots operating
in dynamic environments.

6) Customization for Specific Tasks: LSA allows for the
customization of robotic structures for specific tasks.
For example, a robot designed for heavy lifting can
be  optimized  differently  than  one  designed  for
precision tasks.

These optimizations lead to more robust,  efficient,  and
cost-effective robotic systems.

III. MATHEMATICAL APPROACHES FOR LATENT STRUCTURAL

ANALYSIS 

Before  The mathematical  apparatus  for  LCA is  a  tool
used  to  represent  the  relationship  between  latent  variables
and indicators [1]. This can be expressed as follows:

 

               yi=Λx ηi+ei   (1)

  

            x i=Λ y ξi+δ i               (2)

Model  (1)  is  a  Y-dimensional  model  in  which  the
corresponding  indicator  variables  describe  the  exogenous
variables. It can be represented in matrix form as follows:  
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Model  (2)  is  an  X-dimensional  model  in  which  the
corresponding  indicator  variables  describe  the  endogenous
variables. It can be represented in matrix form as follows:
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where  δ i  and    are typically distributed independent
variables. 

IV. METRICS FOR CHECKING THE ADEQUACY OF THE

MODEL

A. Root Mean Squared Error of Approximation/ Root Mean
Squared Error of Approximation (RMSEA)

The results of this study suggest that model fit studies, in
the presence of large sample sizes, can be supplemented by
applying  the  RMSEA  statistic.  RMSEA  values  less  than
<0.02  with  sample  sizes  of  500+  and  even  at  1000+ can
undoubtedly indicate that the data do not fit the model and
that the X-square is inflated with sample size. 

RMSEA is a measure of empirical/absolute goodness of
fit/correctness  used  [4]  and  its  value  ranges  from 0  to  1.
Reference [7] suggests an acceptable value of RMSEA to be
between 0.05 and .08 to have a reasonable well-fitting model.
Statistically, this indicator can be expressed as follows:

 RMSEA=[ (x2)−df
df (n−1 ) ]

0.5

: withx2= (n−1 )Fmin,  (5)

Where df is the model degree of freedom and Fmin is the
minimum  value  of  the  fitness  function  of  the  estimation
method used. Despite the popularity of this fit index in LSA
studies,  simulation studies in the literature have concluded
that  RMSEA  does  not  perform  well  because  it  too  often
rejects the actual model at small sample sizes (n<250), and
its value can get worse as the number of variables increases
in the model. According to the statement [11], the following
measure, SRMR, is recommended over RMSEA. 

B. Standardized Root Mean Square Residual/ Standardized 
Root Mean Square Residual (SRMR).

SRMR has similar properties to RMSEA indices but is
calculated differently and shows a poor model fit with higher
values,  while a  good model fit  would be an SRMR value
close to zero. However, [9] suggests an SRMR value of less
than  0.08,  indicating  a  good  model  fit.  Statistically,  this
indicator can be expressed as follows: 

 

SRMR=[∑i=1
p

∑
j=1

i

[ (sij−σ̂ ij) ∕ (sii s jj )]
2

k (k+1 )/2 ]
0.5

, (6)



Where   k=p+q,  sij ,  and  σ̂ ij   are  the  sample
covariance  between  the  observed  variables,  and  are  the
estimated components of the variance-covariance matrix of
the model error vector.

C.  Comparative Fit Index (CFI)

 The CFI value ranges  between 0 and 1,  with a value
closer to 1 indicating a better fit. [8] recent studies suggest
that  a  CFI value above 0.95 is  considered  an indicator  of
good model fit or at least 0.90 or higher to ensure that the
model  is  accurately  represented.  The  formula  used  to
calculate the CFI is expressed as follows:
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Max ((xmodel

2
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2
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¿

 ,

(7)

Here,  Max  indicates  the  maximum  value  of  the
expressions given in parentheses.  The comparison between
the model's  x2 and its degrees of freedom is considered the
bias correction of the model.  

D.  The Tucker-Lewis Index (TLI)

The TLI index was introduced by [3]. It is also known as
the  non-normed  Fit  Index  (NNFI).  Its  value  also  varies
between 0 and 1, with a value closer to 1 indicating a better
fit for the model. [9], Suggest a value of 0.95 or higher as an
indicator of a well-structured model. The formula by which
this index is calculated can be expressed as follows:

 TLI=
(xnull
2

/df null )−(xmodel
2

/df model)

(xnull
2

/df null)−1
 ‚

(8)

Where    xnull
2

/df null    is the ratio of the  x2 to the
degree of freedom df.

TABLE 1. CRITERIA FOR ADEQUACY OF THE MODEL

Criterion Value

Incremental  Fit  Index

(IFI)

0.820

Relative Fit Index (RFI) 0,700

Comparative  Fit  Index

(CFI)

0.816

Normed Fit Index (NFI) 0.776

Non-Normed  Fit  Index 0.753

(NNFI)

Parsimony  Normed  Fit

Index (PNFI)

0,579

RMSEA 0,153

Root  Mean  Square

Residual (RMSR)

0,219

Adjusted Goodness of  Fit

Index (AGFI)

0.697

Parsimony Goodnes of Fit

Index (PGFI)

0,504

Standardized RMR 0,0775

GFI 0.812

According to [2], variables whose coefficients of direct
influence are less than ± 0.1 are excluded from the model.
Using the results of the path analysis, the relationship of the
model indicators can be defined directly and indirectly, and
the relative importance of the relationships of the direct and
indirect variables can be assessed using a software package
such as LISREL, for example [5]. In  [12], path analysis for
customer experience evaluation of a virtual gaming platform
is conducted.  

The study presents several  methods and approaches for
latent structural analysis. LSA's mathematical apparatus is a
powerful tool for representing the relationship between latent
variables  and  their  indicators.  Measurement  models  for
exogenous and endogenous variables can be represented in
matrix form, with customarily distributed independent errors
playing a pivotal role.

Numerous  measures  were  considered  to  check  the
adequacy of the model. The root mean square standard error
of  approximation  (RMSEA)  is  an  essential  measure  of
empirical  fit,  with  values  below  0.05  to  0.08  considered
acceptable. However, with small sample sizes, RMSEA may
not perform well. The standardised root mean square residual
(SRMR)  shows  good  model  fit  at  values  close  to  zero.
Values below 0.08 are considered good. The comparative fit
index (CFI) ranges between 0 and 1, with values above 0.90
indicating  good model  fit.  The  Tucker-Lewis  Index  (TLI)
also  varies  between  0  and  1,  with  values  above  0.95
indicative of a well-structured model. These metrics provide
different perspectives for evaluating model adequacy and can
be used more comprehensively in evaluating LSA models.

V. CONCLUSION

This study presents numerous methods and approaches to
latent  structural  analysis  (LSA).  LSA's  mathematical
apparatus is a powerful tool for representing the relationship
between latent  variables and their indicators.  Measurement
models  for  exogenous  and  endogenous  variables  can  be
represented  in  matrix  form,  with  customarily  distributed
independent errors playing a pivotal role. 



Several measures were considered to check the adequacy
of  the  model.  The  root  mean  square  standard  error  of
approximation  (RMSEA)  is  an  essential  measure  of
empirical  fit,  with  values  below  0.05  to  0.08  considered
acceptable. However, with small sample sizes, RMSEA may
not perform well. The standardised root mean square residual
(SRMR)  shows  good  model  fit  at  values  close  to  zero.
Values below 0.08 are considered good. The comparative fit
index (CFI) ranges between 0 and 1, with values above 0.90
indicating  good model  fit.  The  Tucker-Lewis  Index  (TLI)
also  varies  between  0  and  1,  with  values  above  0.95
indicating  a  well-structured  model.  These  metrics  provide
different perspectives for evaluating model adequacy and can
be used together to evaluate LSA models comprehensively. 

In  conclusion,  structural  optimization  using  Latent
Structural Analysis (LSA) significantly enhances the design
and  functionality  of  robotic  systems.  By  meticulously
analyzing stress, strain, and material efficiency, LSA enables
the  creation  of  lightweight  yet  robust  structures.  This
optimization  not  only  improves  the  dynamic  performance
and longevity of robots but also ensures cost-effective and
sustainable  manufacturing  processes.  Ultimately,  LSA
empowers  engineers  to  design  highly  specialized  and
efficient robots tailored to specific tasks, paving the way for
advanced and reliable robotic solutions in various industries.

As a result of this study, it is concluded that the study of
LSA is crucial for the adequate functioning of any modern
robotic enterprise. These methods can be used in robotics, by
implementing  them  in  intelligent  systems,  and  thus  help
improve the agility of robotic manufacturing. 
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