
2024 International Conference “ROBOTICS & MEHATRONICS”
29 – 30 October, 2024, Sofia, Bulgaria

Voice Controlled Interface for ROS Service
Robot in Healthcare

Georgi Angelov
Institute of Robotics

Bulgarian Academy of Sciences
Sofia, Bulgaria

george@robotics.bg

Yasen Paunski
Institute of Robotics

Bulgarian Academy of Sciences
Sofia, Bulgaria

y.paunsky@ir.bas.bg

Abstract—This paper presents the development of a voice-
controlled interface for ROS-based service robots designed to
support healthcare environments. By enabling hands-free,
intuitive interaction through speech, this interface allows
healthcare professionals to command robots without physical
contact, a critical advantage in contaminated or infectious
settings where minimizing touchpoints can significantly reduce
cross-contamination risks. The system leverages advanced
speech-to-text models, such as Whisper, integrated with ROS
middleware, to interpret verbal commands accurately, even in
noisy hospital environments. As voice recognition and real-time
processing technologies evolve, such systems are expected to
play an essential role in advancing operational effectiveness
and patient care quality in medical settings.

Keywords—voice user interface, ROS, service robots, VUI,
UX, voice control

I. INTRODUCTION

Voice-controlled interfaces are an intuitive and hands-
free method for operating service robots, making them
particularly valuable in healthcare where staff frequently
work in demanding, hands-on environments. By allowing
healthcare workers to interact with robots using natural
language, these interfaces simplify control, minimize
physical effort, and help improve efficiency in a wide range
of hospital tasks, from delivering medications to assisting
with room sanitization. As the demand for automation in
healthcare grows, voice-controlled robots provides a
practical solution to streamline operations, reduce human
workload, and support high-quality patient care.

The integration of a voice-controlled interface with ROS
—the widely adopted middleware for robot programming
and control—enables robust communication and
coordination between different robotic components in a
healthcare environment.

ROS facilitates modularity, allowing developers to build
systems that can interpret and execute voice commands
through multiple nodes for tasks such as navigation, object
recognition, and manipulation. Using ROS, a voice-
controlled service robot can interpret verbal commands to
move between locations, fetch supplies, or adjust its actions
based on real-time feedback, adapting to the dynamic nature
of healthcare facilities.

II. INTERFACES FOR CONTROLLING ROS BASED ROBOTS

A. Robot Operating System
The Robot Operating System (ROS) is a flexible

framework for writing robot software, widely used for
developing and controlling robots across various
applications, from research and education to industrial
automation and service robotics. As robots become more
sophisticated, there is an increasing need for user-friendly
web interfaces that allow operators to control and monitor
robots running on ROS remotely. This chapter explores how
web interfaces can be integrated into a ROS environment, the
technologies commonly used for this purpose, and the
advantages and challenges of this approach.

ROS provides a modular architecture where different
software components, called nodes, communicate with each
other through a messaging system. This enables developers
to create complex robot behaviors by integrating various
sensors, actuators, and processing algorithms. Web interfaces
can be designed to interact with these ROS nodes, providing
a graphical interface for users to issue commands, monitor
real-time data, and manage robot configurations from a web
browser.

The integration of web interfaces with ROS can be
achieved using tools like rosbridge and ROS Web Tools,
which provide a bridge between the ROS environment and
web-based applications. This allows for seamless
communication, where web clients can send commands to
ROS nodes or receive data streams for visualization.

B. Key Components of Web Interfaces in ROS

• rosbridge Suite
The rosbridge suite is a set of packages that allows

developers to create web interfaces for ROS. It provides a
WebSocket -based pro tocol , enabl ing rea l - t ime
communication between web clients (browsers) and ROS
nodes. This means that users can interact with ROS topics,
services, and parameters through web browsers without the
need for additional client software.

• roslibjs and roslibpy
roslibjs is a JavaScript library that works with rosbridge

to allow web applications to interact with ROS nodes.
Developers can use roslibjs to send and receive messages,

ACKNOWLEDGE THE FINANCIAL SUPPORT OF THE PROJECT WITH ADMINISTRATIVE CONTRACT № KP-06-H57/8 FROM
16.11.2021. - FUNDED BY THE "COMPETITION FOR FUNDING BASIC RESEARCH - 2021." FROM THE RESEARCH SCIENCES FUND,

BULGARIA.

call services, and manage parameters directly from a web
page.

roslibpy is a similar library written in Python, enabling
Python-based web servers to communicate with ROS
systems. It can be useful for integrating ROS control with
backend web frameworks like Flask or Django.

• ROS Web Tools (e.g., RvizWeb, Web Video
Server)

RvizWeb is a web-based version of Rviz, a popular ROS
tool for visualizing robot models, sensor data, and
environments. It allows users to see real-time 3D
visualizations directly in a web browser, which is useful for
remote robot monitoring and diagnostics.

Web Video Server provides streaming of video feeds
from robots' cameras to a web interface. This can be essential
for teleoperation, where users need visual feedback to
control the robot accurately.

All these tools enhance the functionality of web
interfaces by providing critical visual data, making it easier
to monitor and control robots remotely. They also enable the
development of more sophisticated interfaces that offer real-
time visual feedback.

C. Development Technologies for Web Interfaces in ROS

1. JavaScript and Web Frameworks (React, Vue.js,
Angular)

JavaScript, along with modern web frameworks like
React, Vue.js, and Angular, is commonly used to develop the
front-end of web interfaces for ROS. These frameworks
provide tools for creating dynamic, responsive user
interfaces that can update in real time based on ROS data.

2. PHP & MariaDB

PHP is one of the most common web-programming
languages. Using the language extensive functions list
provides fast and flexible development. MariaDB is a cutting
edge open source database, which pairs very nicely with PHP
for the robot interface back-end.

3. Python (Flask, Django)

Python is often used for backend development, where a
web server running Flask or Django can serve as the
intermediary between the web interface and the ROS
environment. Using Python libraries like roslibpy, developers
can handle ROS communication on the server side, process
data, and serve it to the web client.

D. Advantages of Web Interfaces for ROS Robots

1. Remote Access and Control

Web interfaces enable users to control and monitor ROS
robots from any location, as long as there is internet
connectivity. This is particularly useful for applications
where robots operate in remote or hazardous environments,
such as search-and-rescue missions, industrial monitoring, or
agricultural automation.

The ability to remotely update configurations, monitor
real-time sensor data, and troubleshoot problems without

physical access to the robot reduces downtime and enhances
operational efficiency.

2. Scalability

Web interfaces can be designed to manage multiple
robots simultaneously, making them ideal for fleet
management. Users can monitor the status of multiple robots,
issue commands, and coordinate tasks through a single
interface, streamlining operations across large deployments.

By leveraging cloud services, web interfaces can scale to
accommodate more users and devices, allowing for
centralized management and easier collaboration.

3. Cross-Platform Compatibility

Web interfaces are platform-independent, meaning they
can be accessed from desktops, tablets, and smartphones.
This flexibility allows users to interact with ROS robots from
different devices, ensuring a consistent user experience
regardless of the platform.

Figure 1 shows an IR BAS implementation of an web-
based interface for ROS educational robots (BeBot &
MaxiBot)

1. Figure 1: Embedded Web Interface for Educational Robot

E. Challenges of Web Interfaces in ROS

• Network Latency and Reliability

Effective communication between the web interface and
ROS nodes relies on stable, low-latency network
connections. High latency can result in delayed responses,
which can be critical for real-time control tasks. Ensuring
network reliability is essential, especially in scenarios where
the robot needs to respond quickly to user commands.

In environments with unreliable internet connections,
local networks or hybrid edge-cloud architectures may be
used to mitigate latency issues.

• Security

Since web interfaces can be accessed remotely, security
is a major concern. Robust authentication, encryption, and
data protection protocols must be implemented to prevent
unauthorized access to the robot's control system.
Vulnerabilities in the web application can be exploited to
interfere with robot operations, leading to potential safety
risks.

Secure practices, including the use of SSL certificates,
firewalls, and regular security audits, are necessary to protect
sensitive data and control channels.

• Complexity of Integration

 2

Integrating web interfaces with ROS requires a solid
understanding of both web development and ROS
communication protocols. Developers must handle multiple
technologies, including WebSockets, REST APIs, and ROS
messaging, to create smooth and responsive interfaces.

Developing a robust system that can handle real-time
data while maintaining reliable operation across different
network conditions can be relatively complex and time-
consuming.

III. VOICE INTERFACE IMPLEMENTATION

A voice interface for service robots involves a
streamlined process of capturing, processing, and
interpreting voice commands to allow seamless interaction.
The system integrates hardware components (microphones,
preamps) with software modules (speech recognition,
diarization, decision-making) to achieve efficient and
accurate voice control - block diagram shown on fig.2.

2. Figure 2: Reference Voice Interface Implementation (IR-BAS)

A. Audio Capture: Microphone and Preamp
The process starts with capturing the user's voice through

microphones, which can be directional, omnidirectional, or
arrays depending on the environment. Microphone arrays are
particularly effective as they enable features like
beamforming to isolate the speaker’s voice.

A preamplifier boosts the audio signal to ensure clarity
and minimize noise, preparing it for further processing.

B. Audio Processing: Normalization and Noise Reduction
The captured audio undergoes normalization to

standardize volume levels and noise reduction to filter out
background sounds. These steps are crucial for ensuring
clear, consistent input for the next stages. Techniques such as
spectral subtraction and adaptive filtering can help improve
audio quality, especially in noisy environment. Our present
setup does not include this, but we plan to experiment it in a
next stage.

C. Speaker Diarization (optional)
Diarization identifies and separates different speakers

within the audio input, ensuring that commands intended for
the robot are accurately detected. This is vital in multi-user
scenarios. Machine learning models analyze voice
characteristics to segment and attribute speech, helping the
robot focus on relevant commands. It can be done using an
external tool such as pyannote or NeMo.

Pyannote is an open-source toolkit designed for speaker
diarization, or identifying "who spoke when" in audio
recordings. Built on deep learning frameworks, pyannote
provides highly accurate speaker segmentation and labeling,
making it useful for applications in transcription, meeting
analysis, and multi-speaker audio processing. It integrates
seamlessly with audio processing workflows, offering pre-
trained models and tools to fine-tune diarization for specific
datasets.

NVIDIA NeMo Framework is a scalable and cloud-
native generative AI framework built for researchers and
PyTorch developers working on Large Language Models
(LLMs), Multimodal Models (MMs), Automatic Speech
Recognition (ASR), Text to Speech (TTS), and Computer
Vision (CV) domains. It is designed to help you efficiently
create, customize, and deploy new generative AI models by
leveraging existing code and pre-trained model checkpoints.
It provides a modular framework and pre-trained models,
enabling researchers and developers to customize AI
applications with minimal effort.

D. Speech-to-Text Conversion with Whisper LLM
The processed audio is then passed to a speech-to-text

(STT) engine, such as Whisper, a large language model
(LLM) that is very good in converting spoken language into
text. Whisper’s handles multiple languages, accents, and
noisy conditions, making it optimal for diverse
environments. We use implementation whisper-cpp. There
reference tool command, which works with keyword
commands, ready for interpretation. Also using the tool
stream to get text into file and parsing in realtime with
python is an working option.

E. Decision-Making Engine
The text output from the STT engine is processed by a

decision-making engine. This component uses Natural
Language Processing (NLP) to understand user intent,
context, and execute appropriate actions. The engine may
employ rule-based systems for straightforward commands
and machine learning for more complex instructions. It
translates voice inputs into robot commands, ensuring
precise control and feedback when necessary.

Voice interfaces for service robots combine audio
hardware with advanced software to enable accurate and
intuitive control. By utilizing robust STT engines like
Whisper and sophisticated decision-making systems, these
interfaces can handle complex, real-world interactions.
Continued advancements in noise reduction, diarization, and
contextual NLP will further enhance the reliability and
adaptability of voice-controlled robots, enabling smoother
and more natural human-robot interactions.

VI. CONCLUSION

The development of a voice-controlled interface for
ROS-based service robots in healthcare presents a
transformative approach to enhancing interaction in high-
stakes, hands-free environments.

By integrating speech recognition, natural language
processing, and ROS middleware, these robots can interpret
and execute verbal commands, allowing healthcare personnel
to manage tasks with minimal physical interaction—an
essential benefit in contaminated and infectious settings
where reducing touchpoints can mitigate the spread of
pathogens. This approach enables robots to assist with

 3

routine tasks, freeing healthcare workers to focus on patient-
centered care and improving the overall efficiency of
hospital operations.

However, implementing effective voice-controlled
interfaces in healthcare brings significant technical
challenges, particularly in achieving real-time responsiveness
and low latency. In hospital settings, where immediate and
accurate responses are critical, even slight delays in
processing voice commands could hinder workflow.

To address this, edge computing is increasingly employed
to perform processing tasks locally, significantly reducing
latency and allowing the robot to respond promptly.
Additionally, edge computing helps offload critical tasks
from cloud-based systems, ensuring that the robot’s
functionality remains consistent even with fluctuating
network connectivity—an important factor in real-time
healthcare environments.

Ultimately, voice-controlled ROS service robots have the
potential to revolutionize healthcare by enabling efficient,
safe, and hygienic interaction. The application of advanced
audio processing models like Whisper for speech-to-text
conversion, combined with ROS’s modular design, ensures
that these robots can adapt to noisy, fast-paced healthcare
settings while maintaining reliability. As advancements in
voice recognition, real-time processing, and edge computing
continue, voice-controlled healthcare robots will play a
crucial role in reducing cross-contamination risks, improving
task efficiency, and supporting medical personnel in critical
ways. This technology is poised to significantly elevate
standards of patient care, safety, and operational
effectiveness in healthcare environments.

VII. ACKNOWLEDGMENT

THE AUTHORS ACKNOWLEDGE THE FINANCIAL SUPPORT
OF THE PROJECT WITH ADMINISTRATIVE CONTRACT №
KP-06-H57/8 FROM 16.11.2021. "METHODOLOGY FOR
DETERMINING THE FUNCTIONAL PARAMETERS OF A
MOBILE COLLABORATIVE SERVICE ROBOT ASSISTANT IN
HEALTHCARE", FUNDED BY THE "COMPETITION FOR
FUNDING BASIC RESEARCH - 2021." FROM THE RESEARCH
SCIENCES FUND, BULGARIA.

VIII. REFERENCES

1. G. Angelov, Y. Paunski, R. Zahariev, N. Valchkova, “Designing a
Web Based Software Control System for Service Robot and Sequence
Programming Using Scripting Language Editor”, Proceedings of the
International Conference“Robotics & Mechatronics and Social
Implementations 2018”, CCS vol.1 08. 2018

2. Angelov, G., et al. (2011) "Remote Interface Communication to ROS
Based Robotic System"; Proceedings of the Twenty First International
Conference Robotics and Mechatronics; "Invited Session - Austrian-
Bulgarian Automation Day"; 19-21 September 2011; Varna Bulgaria;
ISSN 1310-3946; pp. 22–27.

3. https://github.com/openai/whisper
4. https://github.com/ggerganov/whisper.cpp
5. https://docs.nvidia.com/nemo-framework/user-guide/latest/

nemotoolkit/starthere/intro.html
6. https://lajavaness.medium.com/comparing-state-of-the-art-speaker-

diarization-frameworks-pyannote-vs-nemo-31a191c6300
7. https://github.com/pyannote/pyannote-audio/blob/develop/FAQ.md
8. https://wiki.ros.org/noetic
9. https://help.ubuntu.com/20.04/ubuntu-help/index.html

 4

https://github.com/openai/whisper
https://github.com/ggerganov/whisper.cpp/tree/master/models
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/starthere/intro.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/starthere/intro.html
https://lajavaness.medium.com/comparing-state-of-the-art-speaker-diarization-frameworks-pyannote-vs-nemo-31a191c6300
https://lajavaness.medium.com/comparing-state-of-the-art-speaker-diarization-frameworks-pyannote-vs-nemo-31a191c6300
https://github.com/pyannote/pyannote-audio/blob/develop/FAQ.md
https://wiki.ros.org/noetic
https://help.ubuntu.com/20.04/ubuntu-help/index.html

	Introduction
	II. Interfaces for Controlling ROS based Robots
	A. Robot Operating System
	B. Key Components of Web Interfaces in ROS
	C. Development Technologies for Web Interfaces in ROS
	D. Advantages of Web Interfaces for ROS Robots
	E. Challenges of Web Interfaces in ROS

	III. Voice Interface implementation
	A. Audio Capture: Microphone and Preamp
	B. Audio Processing: Normalization and Noise Reduction
	C. Speaker Diarization (optional)
	D. Speech-to-Text Conversion with Whisper LLM
	E. Decision-Making Engine

	VI. Conclusion
	VIII. References

