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Abstract— The object of the study is a wheeled mobile robot 
with differential drive wheels and castor support wheel. The 
article examines the problems of stability when the robot 
moves along a set trajectory. A simulation based on a kinematic 
and dynamic mathematical model was made, in which the 
longitudinal and transverse stability were calculated. Limit of 
longitudinal and transverse acceleration for movement along a 
set trajectory are calculated. The simulation shows that the 
maximum accelerations do not exceed the limit values 
guaranteeing the stability of the robot during the movement 
along the set trajectory. 
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I. INTRODUCTION

Wheeled mobile robots, due to their multipurpose, 
perform a wide range of tasks. One subgroup of them is the 
robots with differential wheel drive. They have good 
maneuverability, which is an advantage when working in 
narrow spaces, with many obstacles. Their construction is 
simplified; this facilitates their operation and extends the 
periods between necessary repairs and servicing. However, 
there are some challenges related to their stearing  and 
achieving the necessary stability in motion. In this article, 
we consider some of these problems. 

The article is organized as follows: in the second part, we 
have placed an implementation and description of part of 
the mathematical model of the robot, as well as its location 
in the space. In the third part, through numerical 
experiments, we investigate the accelerations to which the 
robot is subjected and the smoothness of the trajectory 
described by it, while it is in the mode of following a set 
trajectory. In the last part, we draw conclusions about the 
performance of the model. 

II. METHODS AND MATERIALS

In Fig. 1.2 presents a robot with a differential drive on the 
two rear wheels and a front castor-type wheel, which moves 
along a set trajectory S in the plane 𝑂𝑔𝑥𝑔𝑦𝑔 of the global 

coordinate system 𝑂𝑔𝑥𝑔𝑦𝑔𝑥𝑔. Point C (Fig. 2.2) represents 

the geometric center of the rear axle. We choose it to follow 
the trajectory S. Let point A be the support of a front wheel 
(we assume that the contact of the wheels with the road is 

a point, not a spot), points L and R are the supports of the 
left and right wheels, respectively. L and R follow 
trajectories 𝑆𝐿 and 𝑆𝑅 , that are equidistant to S. 

Fig. 1.2 Position of the robot and the set trajectory in the horizontal plane of 

movement 

The Cxyz coordinate system is coupled to the robot body. 
The x axis is contained in the longitudinal plane of 
symmetry of the robot coinciding with the Cxz plane. We 
assume that the mass center 𝑚𝑐  lies on the x-axis. The axis 
𝑣𝑚𝑐  is perpendicular to the segment 𝑚𝑐𝑂𝑡𝑢𝑟𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which is the
moment radius of turn of the center of mass. This axis 
determines the direction of the velocity of the center of 
mass. We determine the angle 𝜃𝑉𝑚𝑐

. Then:

𝑉𝑚𝑐
=

𝑉

cos 𝜃𝑉𝑚𝑐

    (1) 

We determine the projections of 𝑉𝑚𝑐
 on the x and y axes

of the coupled coordinate system: 
𝑉𝑚𝑐

𝑥 = 𝑉𝑚𝑐
cos 𝜃𝑉𝑚𝑐

; 𝑉𝑚𝑐
𝑦 = sin 𝜃𝑉𝑚𝑐

At 𝐶𝑂𝑡𝑢𝑟𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑐𝑜𝑛𝑠𝑡, i.e. the robot moves in a circle centered

at 𝑂𝑡𝑢𝑟𝑛, only centrifugal acceleration and centrifugal force 
are present. For the center of mass, at a given peripheral 
velocity, we have a centrifugal force which is: 

𝑃𝑐 = 𝑚𝑟(𝜔𝑂𝑡𝑢𝑟𝑛
)
2

,  (2) 

where m is the mass of the robot centered at 𝑚𝑐 , 
𝑟 = 𝐶𝑂𝑡𝑢𝑟𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅ and

𝜔𝑂𝑡𝑢𝑟𝑛
=

𝑉𝑚𝑐

𝐶𝑂𝑡𝑢𝑟𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
.  (3) 

Given that the centrifugal acceleration along the axes of the 
coupled coordinate system is: 
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𝑎𝑚𝑐
𝑥 = 𝑟(𝜔𝑂𝑡𝑢𝑟𝑛

)
2
sin 𝜃𝑉𝑚𝑐

;  𝑎𝑚𝑐
𝑦 = 𝑟(𝜔𝑂𝑡𝑢𝑟𝑛

)
2
cos 𝜃𝑉𝑐

  (4) 

respectively: 
𝑃𝑐𝑥 = 𝑃𝑐 sin 𝜃𝑉𝑚𝑐

; 𝑃𝑐y=𝑃𝑐 cos 𝜃𝑉𝑚𝑐
.     (5) 

 
Thus, in the special case when 𝐶𝑂𝑡𝑢𝑟𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 and 𝐶𝑚𝑐
̅̅ ̅̅ ̅̅ ≠ 0, 

the centrifugal force will not act along the transverse axis, 
but only along the longitudinal axis x of the coupled 
coordinate system; respectively at 𝐶𝑂𝑡𝑢𝑟𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 0 ;  𝐶𝑚𝑐
̅̅ ̅̅ ̅̅ = 0, 

the centrifugal force will act only along the y-axis. If the 
robot makes a turn at 𝐶𝑂𝑡𝑢𝑟𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0 ;  𝐶𝑚𝑐
̅̅ ̅̅ ̅̅ = 0 , then no 

centrifugal force will act on the center of mass. Of course, 
the mass moment of inertia I must be taken into account. 

If 𝐶𝑂𝑡𝑢𝑟𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅ ≠ 𝑐𝑜𝑛𝑠𝑡, then 𝑉𝑚𝑐

𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡, 𝑉𝑚𝑐
𝑦 ≠ 𝑐𝑜𝑛𝑠𝑡, 

respectively �̇�𝑚𝑐
𝑥 ≠ 0; �̇�𝑚𝑐

𝑦 ≠ 0, then for the longitudinal 

and transverse acceleration we have: 
𝑎𝑙𝑜𝑛 = �̇�𝑚𝑐

𝑥 + 𝑎𝑚𝑐
𝑥; 𝑎𝑡𝑟𝑎𝑛 = �̇�𝑚𝑐

𝑦 + 𝑎𝑚𝑐
𝑦.          (6) 

Limit values for longitudinal and transverse acceleration 
are determined according to the methods described in [4]. 

The axes of rotation of the left and right wheels coincide 
with the y-axis. Point 𝑂𝑡𝑢𝑟𝑛 lies on the y-axis; it is the 
instantaneous center of the arc of the set trajectory. The 

definition area of a point 𝑂𝑡𝑢𝑟𝑛 matches the set of points 
belonging to the y-axis. In the particular case of rectilinear 
motion 𝑂𝑡𝑢𝑟𝑛 coincides with infinity. With this construction 
scheme, the special case of a turn with zero radius is also 
possible, i.e. 𝐶 ≡ 𝑂𝑡𝑢𝑟𝑛. Actually, the equidistance of the 

trajectories is lost when 𝑂𝑡𝑢𝑟𝑛 ∈ 𝐿𝑅̅̅̅̅ , and 𝑉𝐿
⃗⃗  ⃗ и 𝑉𝑅

⃗⃗⃗⃗  become in 
opposite directions. 

We introduce a cornering response coefficient with 
which the cornering response of various structures built 
according to the considered kinematic scheme can be 
compared: 

𝑘𝑅 = 𝑓(𝐶𝑂𝑡𝑢𝑟𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅; 𝐿𝑅̅̅̅̅ ; 𝐶𝑚𝑐

̅̅ ̅̅ ̅̅ ; 𝐶𝐴̅̅ ̅̅ ).       (7) 
The purpose of this coefficient is to facilitate the selection 

of the geometrical parameters of the structure; the mass 
moment of inertia I and the rolling resistance of the wheels 
are accounted for independently of 𝑘𝑅 . 

More specifically, the coefficient can be written: 

𝑘𝑅 =
𝐶𝑂𝑡𝑢𝑟𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐿𝑅̅̅̅̅ +𝐴𝐶̅̅ ̅̅ +𝑚𝑐𝐶̅̅ ̅̅ ̅̅
 .            (8) 

If it is necessary to correct the influence of some 
components on the right side of the equation, they can 
to be multiplied by an appropriate weighting coefficient.

 
 
 

 
 
 

Fig. 2.2 The robot and the three trajectories 
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III. EXPERIMENTS AND RESULTS 

We calculate the necessary torques so that the mobile 
robot moves along the reference trajectory: 

xr = 1,1 + 0,7 sin (2π / 30); 
yr = 0,9 + 0,7 sin (4π / 30). 

The simulation calculates the torques of the robot using 
the inverse dynamic model and plots the motion trajectory 
in Fig. 1.3. 
The parameters of the robot are mass m = 0,25 kg, mass 
moment of inertia  I = 0,01 kgm2, length L = 0,10 m, wheel 
radius  r = 0,015 m and wheel track L = 0,04 m. 

Figures 2.3 to 7.3 show the simulation results. With the 
parameters of the robot selected in this way, the transverse 
and longitudinal stability of the robot are ensured. 

 

 
Fig. 1.3 

 
 

 
Fig. 2.3 

 
 
 
 

 

 
Fig. 3.3 

 

 
Fig. 4.3 

 

 
Fig. 5.3 
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Fig. 6.3 

 

 
Fig. 7.3 

 

IV. CONCLUSION 

The problems of stable control of a robot with a differential 

drive on both wheels and a support, castor-type wheel are 

investigated. A model of this type of robot was built based on 

the principles of kinetostatics. The longitudinal and transverse 

stability of wheeled mobile robots, depending on their 

geometric proportions, as well as depending on the forces 

acting on them, have been added to the model. 

The influence of the geometrical parameters of the robot on its 

longitudinal and transverse stability was investigated. Through 

numerical simulation, it is shown that the modeled robot has 

parameters where the longitudinal and transverse stability are 

ensured. 
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